精品解析:广东省深圳实验学校高中园2024-2025学年高一上学期第二阶段考试数学试卷(解析版)

3.0 天天练 2026-01-09 4 4 334.36KB 12 页 免费
侵权投诉
深圳实验学校高中园 2024-2025 学年度第一学期第二阶段考试
高一数学
时间:120 分钟 满分:150
命题人:李俊芳 审题人:魏兆民
第一卷
、单题共 8小题540 .每小四个只有
一项符合题目要求,选对得 5分,选错得 0.
1. ,则下列不等式成立的是( )
A. B. C. D.
【答案】A
【解析】
【分析】根据不等式的性质可判断 ACD 的正误,根据反例可判断 B的正误.
【详解】对于 AD,因为 ,故 ,且 ,故 A成立,D错误
对于 B,取 ,则 ,但 ,故 B错误;
对于 C,因为 ,故 ,故 C错误;
故选:A
2. 已知集合 ,若 ,则实数 的取值范围是
( )
A B. C. D.
【答案】D
【解析】
【分析】由指数函数的性质求出集合 ,再由交集的结果求解即可;
【详解】由 ,所以 ,
因为 ,所以 ,即 ,
故选:D.
3. ,则下列正确的是( )
A. B. C. D.
【答案】B
【解析】
【分析】由指数函数和对数函数的单调性比较即可;
【详解】 , ,
所以 ,
故选:B.
4. 已知 上的单调函数 ,满足 ,则实数 的取值范围是
( )
A. B. C. D.
【答案】C
【解析】
【分析】根据 可求得 ,可知 在 时单调递减,从而得到
在 上单调递减;根据对数函数单调性和临界点的大小关系可得到不等式组,解不等式组
求得结果.
【详解】 , 当 时, 单调递减,
上的单调函数 ,解得:
故选:C.
5. 命题“ ”为真命题的充要条件是( )
A. B. C. D.
【答案】D
【解析】
【分析】由存在命题、判别式以及充要条件的性质求解即可;
【详解】由题意可得 ,解得 ,
故选:D.
6. 函数 且 )的图象恒过点 ,函数
)的图象恒过点 ,则 ( )
A. B. C. D.
【答案】B
【解析】
【分析】由指数函数和对数函数的性质求解即可;
【详解】由指数函数的性质可得 ,由对数函数的性质可得 ,
所以 ,
故选:B.
7. 已知偶函数 上单调递减,则不等式 的解集是( )
A. B.
C. D.
【答案】D
【解析】
【分析】根据函数的奇偶性和单调性将不等式转化为 ,求解即可.
【详解】因为 为偶函数,且在 上单调递减,
又因为 ,所以 ,解得 ,
所以不等式 解集是 .
故选:D.
8. 已知函数 有两个零点,在区间 上是单调的,且在该区间中有且只有
一个零点,则实数 的取值范围是( )
A. B.
C. D.
【答案】C
【解析】
【分析】求出函数 的单调区间,再结合集合的包含关系及零点存在性定理列式求解即得.
【详解】函数 上单调递减,在 上单调递增,
由在区间 上是单调的,且在该区间中有且只有一个零点,
且 或 且 ,
则 或 ,解得
所以实数 的取值范围是 .
故选:C
二、多选题:本题共 3小题,每小题满分 6分,共 18 .在每小题给出的四个选项中,至少
有两项符合题目要求.全部选对得 6分,部分选对得部分分,选错或不选得 0.
9. 下列说法正确的是( )
A. 命题“ ,都有 ”的否定是“ ,使得

标签: #数学

摘要:

深圳实验学校高中园2024-2025学年度第一学期第二阶段考试高一数学时间:120分钟满分:150分命题人:李俊芳审题人:魏兆民第一卷一、单选题:本题共8小题,每小题满分5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,选对得5分,选错得0分.1.若,则下列不等式成立的是()A.B.C.D.【答案】A【解析】【分析】根据不等式的性质可判断ACD的正误,根据反例可判断B的正误.【详解】对于AD,因为,故,且,故A成立,D错误对于B,取,则,但,故B错误;对于C,因为,故,故C错误;故选:A2.已知集合,,若,则实数的取值范围是()AB.C.D.【答案】D【解析】【分析】由指数函数的...

展开>> 收起<<
精品解析:广东省深圳实验学校高中园2024-2025学年高一上学期第二阶段考试数学试卷(解析版).docx

共12页,预览4页

还剩页未读, 继续阅读

作者:天天练 分类:高中 价格:免费 属性:12 页 大小:334.36KB 格式:DOCX 时间:2026-01-09

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 12
客服
关注