2021年高考语文试卷(北京)(空白卷)

3.0 萨法地方 2025-12-28 4 4 1.63MB 11 页 免费
侵权投诉
2021 年普通高等学校招生全国统一考试(北京卷)
语文
本试卷共 10 页,150 分。考试时长 150 分钟。考生务必将答案答在答题卡上,在试卷上作答
无效。考试结束后,将本试卷和答题卡一并交回。
一、本大题共 5 小题,共 17 分。
阅读下面材料,完成下面小题。
材料一
机器学习是一种人工智能技术,它通过设计算法,让计算机可以从有限的观测数据中分析并获取规律,
然后利用“学习”到的规律对未知数据进行预测,从而帮助人们完成应用任务。运用机器学习解决应用问
题,一般包含如下几步:首先是对观测数据作预处理,然后是从观测数据中提取有效特征并对特征进行转
换,最后是构建函数并利用它进行预测。
传统的机器学习主要关注预测函数的构建,至于特征,则一般是通过人为地设计一些准则,然后根据
这些准则从观测数据中获得。对机器而言,这可看作是一种“浅层学习”。由于浅层学习有时不能很好地
获得有助于提升预测准确率的特征,“深度学习”应运而生。
深度学习需要构建具有一定“深度”的模型,让机器自动从观测数据中学习到有效的特征,帮助提升
预测的准确率。“深度”与数据处理过程的组件数量密切相关,深度模型的原始输入与输出结果之间有多
个组件,每个组件都会对数据进行加工,并影响后续组件。当得到最终的输出结果时,我们并不清楚每个
组件的贡献是多少,判断每个组件对输出结果的影响称为“贡献度分配”问题。以下围棋为例,每当下完
一盘棋,我们会思考哪几步棋导致了最后的胜利或失败,判断每一步棋贡献的多少就是贡献度分配问题。
该问题在深度学习中至关重要,解决起来也非常困难。
目前,深度学习大多采用“人工神经网络”来实现。人工神经网络内部包含多个层次,正好能满足深
度学习的“深度”需求。近年来,深度学习技术快速发展,其所使用的人工神经网络模型从早期的五至十
层增加到目前的数百层,这极大提高了特征提取与转换的能力,也使预测的准确率随之上升。
深度学习技术被广泛应用于模式识别、自然语言处理等诸多领域并取得了重大突破。我们要想在方兴
未艾的科技革命中占有先机,牢固掌握以深度学习为代表的人工智能技术是件。
1. 根据材料一,下列表述正确的一项是( )
A. 机器学习的最终目的是从数据中寻找到某种规律。
B. 机器学习从数据中学到的规律可以用函数来表示。
C. 机器学习完成特征提取与转换后就可以进行预测。
D. 浅层学习无需人工干预,完全依赖机器自主完成。
1 | 11
2. 根据材料一,下列对“深度学习”的理解与推断,不正确的一项是( )
A. 可以更好地处理数据特征,更准确地预测。 B. 数据处理过程中的组件数量会影响其深度。
C. 数据处理过程中影响最大的组件不难确定。 D. 是人工智能技术的代表,已有广泛的应用。
材料
神经统是一个非常复杂的组,包含几百亿个神经。神经与神经之间连接,它
们通过突进行互联来传递信息。神经可被看作是有兴奋和抑制两状态细胞,突触将一个神经
的兴奋状态传至一个神经。突,其度可以通过学习或训练来不断改变,具有一定的可
。一个神经状态是兴奋还抑制,取决于它从其神经元接收到的信号量以度。当一个
神经元接收到的信号总和超过了阈值细胞体就会兴电脉冲电脉冲通过突到其
神经。可以为,在人神经统中,每个神经元本身固然重要,但更重要的是神经组成网络。
发,科学构建了一种在结构、工作原理和功能上都模神经统的计算模型,称之
为“人工神经网络”,称“神经网络”。在机器学习领域,神经网络由很多人工神经互连接构成
统,这些人工神经一般被称为节点,每个节点本质上是一个函数。神经网络不同节点间的连接
了不重,每个表示一个节点一个节点影响的大。每个节点的“兴”或“抑制”,由
来自其他节点的数据信息节点间的连接权综合计算得到。
深度学习利用神经网络构建模型,可以对数据进行好的特征提取与特征转换,从而得到预测准确率
高的函数。了神经网络模型,深度学习也可以采用“深度信念网络”等其他类型的模型。由于神经
网络能助相关算法好地解决贡献度分配问题,它成为了深度学习主要采用的模型。
以上则材料取材于邱锡鹏的相关
3. 根据材料二,下列对人脑神经系统的理解,不正确的一项是( )
A. 一个神经元是兴奋还是抑制的状态不全由其自身决定。
B. 一个神经元接收到其他神经元的电脉冲以后就会兴奋。
C. 人脑神经系统中神经元本身不如神经元如何组网重要。
D. 人脑神经系统启发了深度学习中一种主要模型的构建。
4. 根据材料一和材料二,下列理解与推断,不正确的一项是( )
A. 人工神经网络在自然语言处理等诸多领域是无可替代的。
B. 深度学习进行预测的能力与其模型的层次数量密切相关。
C. 沟通不同神经元的突触的强度不是恒定的,可以被改变。
D. 人工神经网络模型被深度学习采用有不止一方面的原因。
5. 根据以上两则材料,说明深度学习“应运而生”的原因,以及人工神经网络在深度学习中的作用。
二、本大题共 6 小题,共 24 分。
阅读下面文言文,完成下面小题。
2 | 11
夫儒生,礼义;耕战饮食也。贵耕战生,是弃礼义饮食也。使礼义废纲纪败,上下
阴阳谬水旱失时,五万民饥死不得不得也。无益之,水灾;
旧礼无补之,乱患儒者之在礼义旧防也,有之无益之有夫礼义成效于
人,然成效者须[1]礼义而成。蹈路而行,所路须蹈者;身须手足而动,动者待不动故事
无益益者须效,而效者待之。生,耕战须待也,而不,如何?
韩子无益盖谓俗儒无举措不重,以儒名行,以实学而伪说贪官尊荣
不足夫志洁,不徇爵禄去卿相之位若脱躧者居位治职功虽此礼义也。
所以礼义也。民无礼义倾国危主。今儒者,重礼爱义,率无礼义士激无义之人。人
其主上,此亦也。闻伯夷风者贪夫廉懦夫立志;闻柳惠风者薄夫鄙夫宽
非人所
段干木2阖门不出,魏文3之,式其秦军闻之,攻魏。使魏无干木秦兵境土
危亡强国也,兵无不胜,加于魏国必破,三军兵顿流血千里今魏文阖门却强秦
全魏国济三军功莫赏莫
有高曰狂谲华士昆弟也,降志,不非其主。太公封此二子
4齐众上用之之。韩子善之,以为二子无益而有也。
夫狂谲华士段干木也,太公诛之,;魏文侯式之,却强秦全魏功孰者?狂谲
华士干木也,使韩子善干木阖门、高魏文之式是也,则善太公非也。使韩子干木
行,下魏文之式,则干木行而有魏文用式之为有功;韩子赏功也。
取材于王充《论衡·
注释:【1】须:等待,这里是依靠的意思。【2】段干木:战国时魏国隐士。【3】魏文:魏文候,战国
初魏国君主。【4】解沮:瓦解、涣
6. 下列对加点词的解释,不正确的一项是( )
3 | 11

标签: #高考

摘要:

2021年普通高等学校招生全国统一考试(北京卷)语文本试卷共10页,150分。考试时长150分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。一、本大题共5小题,共17分。阅读下面材料,完成下面小题。材料一机器学习是一种人工智能技术,它通过设计算法,让计算机可以从有限的观测数据中分析并获取规律,然后利用“学习”到的规律对未知数据进行预测,从而帮助人们完成应用任务。运用机器学习解决应用问题,一般包含如下几步:首先是对观测数据作预处理,然后是从观测数据中提取有效特征并对特征进行转换,最后是构建函数并利用它进行预测。传统的机器学习主要关注预测函数的构建,至于特...

展开>> 收起<<
2021年高考语文试卷(北京)(空白卷).doc

共11页,预览4页

还剩页未读, 继续阅读

作者:萨法地方 分类:高中 价格:免费 属性:11 页 大小:1.63MB 格式:DOC 时间:2025-12-28

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 11
客服
关注